

� EMBED Word.Picture.6 ����

Version 3.0

Aug.20th, 1997�
�

Divine Entertainment

2970 Laurel Run Road

Wilkes-Barre, PA 18702-9483

mailto:dracoirs@epix.net

http://www.epix.net/~dracoirs/

�
Disclaimer

The author (Divine Entertainment) specifically disclaims all warranties, expressed or implied, including but not limited to implied warranties of merchantability and fitness for a particular purpose with respect to defects in the software and documentation.

In no event shall the author be liable for any loss of profit or damage, including but not limited to special, incidental, or consequential damages.

Sound Blaster is a registered trademark of Creative Labs, Inc.

All product names, trademarks and registered trademarks contained in this document are the property of their respective holders.

�
Those Honorable People

MikMod documentation and the distribution package are maintained by Jake Stine of Divine Entertainment. Most of the source code in MikMod is written by Jake Stine and Jean-Paul Mikkers, with some parts written by third-party individuals, who are credited here:

Arnout Cosman�
Pro Audio Spectrum drivers for DOS.�
�
�
�
�
Mario Koeppen�
Windows Sound System drivers for DOS.�
�
�
�
�
Steffen Rusitschka�
AWE32 drivers for DOS.�
�
�
�
�
Jeremy McDonald�
Fast ASM mixer for Watcom/DOS.�
�
�
�
�
Dmitry Boldyrev�
Macintosh audio drivers.

VIRTCH (software mixer) enhancements.�
�
�
�
�

And on the UNIX side of things:

Peter Amsutez

Steve McIntyre�
Put together the UNIX distribution.�
�
�
�
�
Chris Conn�
Linux (OSS) sound driver.�
�
�
�
�
Andy Lo A Foe�
Linux Ultra (Gravis Ultrasound) driver.�
�
�
�
�
Valtteri Vuorikoski�
Sun / Solaris sound drivers.�
�
�
�
�
Roine Gustafsson�
Alpha sound driver.�
�
�
�
�
Stephan Kanthak�
HP-UX / AIX sound drivers.�
�
�
�
�
Lutz Vieweg�
SGI sound driver.�
�
�
�
�

Special thanks to these people for contributing to MikMod.

Thanks also go out to the many beta testers of MikMod 3.0, who have helped to find bugs and give helpful suggestions. If you feel you have been forgotten from this list, mail Jake Stine and give him a piece of your mind and demand credit where credit is due.

�
Table of Contents

This document file has not been completed yet. The sections exist, most in partial form, but are not yet organized. For now, this file is short enough that you can page through and find what you need without much trouble. A future version of this fill will have a completed table of contents and more in-depth sections.

Introduction to the MikMod Sound System

The MikMod sound system is one of the best ways for a programmer to add music and sound effects to a game. It is a powerful and flexible library of code, with an API that is both simple and very powerful. With MikMod, programmers can add music and/or sound effects to any DOS program, or can simply use MikMod for its array of soundcard device drivers.

MikMod supports a variety of soundcards, and runs on a large array of platforms, including MS-DOS, Windows95, Linux, Macintosh, and more. Note that only the MS-DOS platform is currently officially supported by Divine Entertainment, and that drivers for other platforms are maintained by third party programmers on an independent basis.

The purpose of this document is to cover the general usage of the MikMod Sound System. This document also details some additional information about the internal workings of the module player and various soundcards in the appendixes. For other miscellaneous information, check the various .TXT files that also come with the MikMod package.

Using MikMod to play Music

For simply playing music from MikMod [a module player, for example], the process of function calls is simple. Below is a sample block of code that illustrates the process [see also EXAMPLES/MIKMOD.C]:

{

 UNIMOD *mf; /* module handle for loaded songs */

 .

 .

 MikMod_RegisterAllLoaders();

 MikMod_RegisterAllDrivers();

 MikMod_Init();

 .

 .

 mf = MikMod_LoadSong("songname.it", maxchan);

 MikMod_PlayStart();

 .

 .

 .

 MikMod_PlayStop();

 MikMod_FreeSong(mf);

 .

 .

 MikMod_Exit();

}

Note the ‘maxchan’ value passed to MikMod_LoadSong; This parameter specifies the maximum number of mixer voices the loader is allowed to allocate.

Extra unused mixing voices have no impact on the speed of module playback (255 silent voices is no slower than 2 silent voices).

The absolute maximum number of mixer voices that MikMod currently supports is 255. Hardware mixer voices supported varies from soundcard to soundcard.

Using MikMod to play Sound Effects

Like in MikMod's music engine, sound effects use the generic SAMPLE structure, which has most of the information needed to properly play back the sample. Actually, the only difference between sound effects and music samples are which procedures you call to load and play them. With MikMod, you can control whether sound effects are loaded and played using the software or hardware mixers (when available) using the md_mode flag DMODE_SOFT_SNDFX.

Software Mixing�
This is the suggested method of doing sound effects playback, especially if you will be loading and unloading samples frequently, as many games do. Soundcard RAM is simply too inflexible and often there is not much installed for it to be cluttered by sound effects.�
�
�
�
�
Hardware Mixing �
This should only be used for sound effects if you plan to have a set of static sounds for use throughout an entire program! One such example would be a module player that has a special beep sound or two it uses for interface errors. Also, the sound effects should be loaded first, before any modules, for optimal soundcard RAM usage.�
�

Loading Sound Effects

MikMod current comes with support for loading and playing the RIFF WAVE [.WAV] format sound files directly, and a set of low-level functions by which a user can write their own custom sample loader. The simplest way to load a sample is through the WAV loader, assuming the samples are in WAV format.

The WAV loader can behave in two different ways, depending on if you are using hardware or software mixing for the sound effects. If you plan to be using hardware mixing, see Listing 5 below under Advanced Sound Effects.

Below are two examples to demonstrate loading samples under software mixing mode using WAV_LoadFN and WAV_LoadFP [see also EXAMPLES/MIKWAV.C]:

Listing 1: Loading a Sound Effect Using WAV_LoadFN

{

 SAMPLE *sound01, *sound02;

 sound01 = WAV_LoadFN("sound01.wav");

 sound02 = WAV_LoadFN("sound02.wav");

 ..

 ..

 WAV_Free(sound01); // unload the sound effects when

 WAV_Free(sound02); // done with them.

}

Listing 2: Loading a Sound Effect Using WAV_LoadFP

{

 SAMPLE *sound01, *sound02;

 FILE *sndfp;

 sndfp = fopen(“sounds.pak”,”rb”);

 fseek(sndfp, SOUND01_SEEKPOS, SEEK_SET);

 sound01 = WAV_LoadFP(sndfp);

 fseek(sndfp, SOUND02_SEEKPOS, SEEK_SET);

 sound02 = WAV_LoadFP(sndfp);

 fclose(sndfp);

 ..

 ..

 WAV_Free(sound01); // unload the sound effects when

 WAV_Free(sound02); // done with them.

}

As shown in Listing 2, a single file which contains more than one sample is opened, and before each call to WAV_LoadFP, the file’s seek position is set to the respective locations of ‘SOUND01’ and ‘SOUND02.’ Also, you can cut back on the use of the fseek function [which can be sluggish, especially if loading from a CD-ROM] if the samples are stored within the file in the sample sequence in which you load them. In such a case, individual calls to fseek before loading each sample is unneeded since the file pointer will be updated as each sample is read by WAV_LoadFP.

Playing Sound Effects

To play a sound effects sample use MikMod_PlaySample. This procedure will start the sample in an empty sound effects voice (or cut another if all are taken), and takes three parameters:

Syntax: MikMod_PlaySample(SAMPLE *sample, ULONG start, UBYTE flags)

sample�
Pointer to the SAMPLE structure of the sample to play.�
�
�
�
�
start�
Position from which to start playing the sample. This is not in bytes, which means that on a 16 bit sample, a starting position of 20 will actually start at the 40th byte.�
�
�
�
�
flags�
Either zero or set to SFX_CRITICAL, which will prevent future calls to MikMod_PlaySample from cutting this sample. This would be used for things like a constant looping background sound or voices which should finish playing through once. [more options may be added in the future]�
�

Each sample has a set of default attributes within the SAMPLE structure which control the playback of the sample. These are speed, panning, and volume. In addition, one can change the playback settings of any particular playing sound effect by saving the voice returned by MikMod_PlaySample and calling the Voice_XXXX functions.

Speed�
Voice_SetSpeed�
The playback speed (also referred to as the frequency) controls how fast the sample is played. This gives the effect of higher and lower pitches, and can be used to speed up the hum of an engine, or to simulate the Doppler Effect.�
�
�
�
�
�
Panning�
Voice_SetPanning�
Panning refers to the stereo positioning of the sample. Panning can be from full left (0) to full right (255). PAN_LEFT, PAN_RIGHT, PAN_MIDDLE, and PAN_SURROUND are also defined.�
�
�
�
�
�
Volume�
Voice_SetVolume�
The default volume of the sample can range from 0 (silence to 64, and the voice volume ranges from 0 to 256. To convert from sample volume to voice volume, simply multiply the sample volume by four.�
�

Listing 3: Basic Demonstration for Playing and Controlling a Sound Effect

{

 SAMPLE *sndfx;

 int voice;

 // Assume that the sound effect has already been loaded.

 // Start sample, and record the voice it is assigned.

 voice = MikMod_PlaySample(sndfx, 0, 0);

 // Make the voice HALF the volume of it’s default value (note the

 // different scale between sndfx->volume [0->64] and Voice_SetVolume

 // [0-255].

 Voice_SetVolume(voice, sndfx->volume * 2);

 // Now let’s slide the sample from left to right.

 for(i=0; i<256; i++)

 { Voice_SetPanning(voice, i);

 MikMod_Update();

 delay(10);

 }

}

Advanced Sound Effects

In some situations it might be preferred that the sound effects are loaded into soundcard hardware and accelerated. This situation is only prudent if the sound effects are uploaded at the start of the program and left untouched until the program exits. Such a situation would be a module player that uploads its own warning sound, played when illegal commands or values are entered. Listing 5 below shows an example of such a setup.

Listing 5: Loading WAVs for Hardware Mixed Sound Effects

{

 SAMPLE *sound01, *sound02;

 FILE *sndfp01, *sndfp02;

 sndfp01 = fopen(“sound1.wav”,”rb”);

 sound01 = WAV_LoadFP(sndfp1);

 sndfp02 = fopen(“sound1.wav”,”rb”);

 sound02 = WAV_LoadFP(sndfp2);

 MikMod_LoadSamples();

 fclose(sndfp1);

 fclose(sndfp2);

}

Listing 5 is a good deal more complex, and this is needed in order for MikMod to perform crucial memory management and sample compression if the sample sizes exceed available RAM. This can only be done if MikMod knows all the sample sizes before loading the sample data, which is why there is MikMod_LoadSamples.

Using To-Disk Mixing

A special feature of MikMod is its high-quality to-disk mixer [found in VIRTCH2.C]. This mixer is specially designed for optimum quality of sound. As a result this mixer is incredibly slow. The purpose of this mixer is intended for creating high quality audio files for purposes such as audio tracks on a CD. The to-disk mixer can also be used to generate wavefile audio for songs that would otherwise not be able to be played back real-time (complex ImpluseTracker files that require 64 or more voices, for instance).

Features of the to-disk mixer include:

8 Step Reverb�
Real reverberation effects. The depth of the reverb is controllable via md_reverb, which accepts valid values between 0 and 16. The length of the reverb can also be controlled by modifying the REVERBERATION constant and recompiling VIRTCH2.C.�
�
�
�
�
2x to 32x Sampling�
The process of multiplying the mixing rate by the given factor, and taking the average of the extra samples when down-mixing. This system helps smooth the sounds and remove clicks and pops, but can drastically reduce the speed of the mixing. This factor is controlled via the SAMPLING_SHIFT constant in VIRTCH2.C�
�
�
�
�
Interpolated Mixing�
Interpolated mixing is always enabled for the to-disk mixer.�
�
�
�
�
Dolby Surround Sound�
Dolby Surround is enabled or disabled with the md_mode & DMODE_SURROUND flag.�
�
�
�
�

It is recommended that an external audio editor, such as Sound Forge or Goldwave, be used to further improve the quality of the mixed output. Generally, it is a good idea to apply a low-pass filter, which will help remove unwanted overtones and other artifacts of the mixing process.

The UniMod Internal Format

The UniMod module format is MikMod's own internal structure and native file format. UniMod has been adapted to be flexible enough to accommodate all supported module formats without any quality loss. In addition, the UniMod disk format is often smaller than the same module in its original format, and loads faster than all other formats. However, the UniMod format is not good for use as a distributed module format. The format will change frequently in order to support any new module formats that are released, and this makes it difficult for other module players other than MikMod to maintain playable UniMod support.

To convert any module composed in one of the supported module formats (see Appendix A) to the UniMod internal format, use the MIKCVT utility, which is distributed both separately and with the MikMod package. For information on how to use MIKCVT, see MIKCVT.TXT.

Since both MIKCVT and MikMod come with full source code, it is possible for any programmer to customize the UniMod format for specific tasks. Simply modify the data written out by MIKCVT, and the LOAD_UNI.C of MikMod accordingly. Tailoring the format can be useful for optimizations or simply rearranging the format to help prevent hacking of the music from games or demos. Modifications should be for private use only, please do not redistribute a modified version of MIKCVT or LOAD_UNI.C!

Appendix A: Module Loader Reference

Below is a chart of all of the module types supported by MikMod and the names of the loader objects you can register.

load_m15�
The SoundTracker / Ultimate SoundTracker module format. This loader is not registered by MikMod_RegisterAllLoaders because of its unstable detection routine.�
�
�
�
�
load_mod�
Protracker / Startracker / FastTracker / etc. loader.�
�
�
�
�
load_xm�
FastTracker II loader.�
�
�
�
�
load_it�
ImpulseTracker loader.�
�
�
�
�
load_s3m�
ScreamTracker 3 loader.�
�
�
�
�
load_stm�
ScreamTracker 2 loader.�
�
�
�
�
load_mtm�
MultiTracker module loader.�
�
�
�
�
load_669�
669 module loader.�
�
�
�
�
load_far�
Farandole loader.�
�
�
�
�
load_dsm�
DSIK internal format loader.�
�
�
�
�
load_med�
OctaMed MMD0 / MMD1 loader.�
�
�
�
�
load_ult�
UltraTracker loader.�
�
�
�
�
load_uni�
MikMod internal UniMod loader.�
�
�
�
�
�
�
�

Format Information

The module music format is based on a concept similar to MIDI, where music is ‘tracked’ into several channels, and notes control when sounds (usually instruments such as drums or pianos) are played. Module music introduces increased flexibility over General MIDI because each module can have its own individual set of sampled instruments. Also, modules offer an array of technically specific commands that allow for excellent control over how an instrument sounds each time it is played. As other bonuses, modules tend to process faster than MIDI. However, modules usually consume a great deal more space.

Below is a list of all the module formats that MikMod supports for loading, playing, and for conversion to UniMod.

Ultimate Soundtracker�
UST / MOD�
This was one of the earliest module formats, developed and used only on the Amiga back in 1987 to 1988. This format has no file ID (pretty dumb), and only supported 4 channels because that was what the Amiga hardware supported. Because of the lack of a file ID, it is always checked for last, so to not be confused with other module types.�
�
�
�
�
�
Soundtracker�
MOD�
Came into use shortly after UST, and sports a few minor enhancments. Like UST, this format has no file ID, and autodetection can be unreliable.�
�
�
�
�
�
Protracker�
MOD�
The most popular of all Amiga-based module formats. This was the most widely used format for many years. It had many effects support, but a maximum of four channels. It became the standard for modules.�
�
�
�
�
�
StarTracker

TakeTracker

Atari Oktalyzer

FastTracker�
MOD�
All basically identical to Protracker, but supported more channels (Star Tracker and Atari up to 32, and TakeTracker and FastTracker up to 8).�
�
�
�
�
�
ScreamTracker 2�
STM�
This was the first tracker and module format developed for the IBM PC. It is based on the Soundtracker module specifications, and does not sport many of the features offered by Protracker.�
�
�
�
�
�
ScreamTracker 3�
S3M�
The format now supports 16 channels, all Protracker effects, and a handful of new features as well.�
�
�
�
�
�
MultiTracker�
MTM�
Supported Protracker effects and 32 channels.�
�
�
�
�
�
669 Tracker�
669�
An early module format with few effects and support for 32 channels. This format was never documented, and is only partially supported. Some modules will play incorrectly with in MikMod.�
�
�
�
�
�
Farandole�
FAR�
An enhanced version of the 669 format complete with Protracker-comparable effects support. This format is not completely supported by MikMod either.�
�
�
�
�
�
OctaMED�
MED�
Officially called MMD0 and MMD1, and were a mix of MIDI and Protracker module. Support up to 8 channels.�
�
�
�
�
�
UltraTracker�
ULT�
The UltraTracker was much like Protracker with one major difference: the ability to have two effects per channel.�
�
�
�
�
�
DSIK�
DSM�
Internal format for DSIK. Designed to be universally supportive, like MikMod’s UniMOD format.�
�
�
�
�
�
Fasttracker 2�
XM�
Radically different from the Protracker and Soundtracker format standards. XMs also have additional features such as volume envelopes, and support up to 32 channels.�
�
�
�
�
�
Impulse Tracker�
IT�
Another radically unique module format, which is based on the S3M format, but incorporates tons of new features including everything XMs have to offer and more. Most notably, it utilizes New Note Actions.�
�

Global Variable Reference

MikMod uses several global variables for monitoring and controlling sound output and quality and music playback.

Module Information [UNIMOD Structure]

When any type of song is loaded, all of its information is saved internally in a UNIMOD structure, as returned by MikMod_LoadSong, MikMod_LoadSongFP, and Player_GetUnimod. For the actual structure definition, refer to PTFORM.H. The elements of the UNIMOD structure are as follows:

Disk Format Elements

Unless you are making a module composer, these variables are generally read-only. Other than the instruments and samples elements, the variables are only used by the player during loading and initialization.

flags�
UWORD�
See UNIMOD mode flags.�
�
�
�
�
�
numchn�
UBYTE�
Number of effects control channels used by the module.�
�
�
�
�
�
numvoices�
UBYTE�
Maximum number of mixing voices needed for best playback. Used at load-time only to set the number of song voices via MikMod_SetNumVoices. The player will use all song voices allocated regardless of this value.�
�
�
�
�
�
numpos�
UWORD�
Number of pattern positions [also called orders]. See also Tracks and Patterns.�
�
�
�
�
�
numpat�
UWORD�
Number of different patterns. See also Tracks and Patterns.�
�
�
�
�
�
numtrk�
UWORD�
Number of different tracks. See also Tracks and Patterns.�
�
�
�
�
�
numins�
UWORD�
Number of instruments.�
�
�
�
�
�
numsmp�
UWORD�
Number of samples.�
�
�
�
�
�
reppos�
UWORD�
Pattern position to jump to when a song loops. �
�
�
�
�
�
initspeed�
UBYTE�
Initial song speed. Set a loading time.�
�
�
�
�
�
inittempo�
UBYTE�
Initial tempo [beats per minute]. Set at loading time.

Legal range: 33 to 240.�
�
�
�
�
�
initvolume�
UBYTE�
Initial global volume. Set at loading time.

Legal range 0 to 128.�
�
�
�
�
�
songname�
CHAR *�
Name of the song.�
�
�
�
�
�
composer�
CHAR *�
Name of the composer.�
�
�
�
�
�
comment�
CHAR *�
Comment field.�
�
�
�
�
�
instruments�
INSTRUMENT *�
Array of instrument information. See also Instrument Structure.�
�
�
�
�
�
samples�
SAMPLE *�
Array of sample information. See also Sample Structure.�
�
�
�
�
�
tracks�
UWORD **�
Array of numtrk track pointers to UniTrack Streams [which can be of variable length]. Tracks are the basic building blocks of the module.�
�
�
�
�
�
patterns�
UWORD *�
Array of patterns, allocated as numpat * numchn. Each element of the array references an associated UniTrack Pointer in the tracks array [above], so there are numchn pointers for each pattern. Indexing looks like:

patterns[(sngpos * numchn) + track]�
�
�
�
�
�
pattrows�
UWORD *�
Number of rows in each pattern. This array has numpat elements, and each pattern length goes for all tracks referenced for that pattern from the patterns array [above].�
�
�
�
�
�
positions�
UWORD *�
Array of numpos pattern positions. Each element of the array references a pattern, and controls the order in which the song is played. See patterns array [above].�
�
�
�
�
�

Current Module Replay Status

Most of these variables are updated continuously [except for modtype, which is set at loading time]. If you are making a tracker or module player, you can read these parts of UNIMOD and display the info to the end user.

Can be changed at any time [changes take effect immediately]:

modtype�
UBYTE�
String indicating the type of module that the song was loaded from. For example, this might be ‘ScreamTracker 2.xx’ or ‘ImpulseTracker 2.xx’.�
�
�
�
�
�
bpm�
UBYTE�
Current tempo [beats per minute] of the song.

Legal range: 33 to 240.�
�
�
�
�
�
volume�
UBYTE�
Global song volume. This value can be set by and controlled by modules that support global volume effects. See also md_songvolume.

Default: 128 [or song specified]

Legal range: 0 to 128. �
�
�
�
�
�

Should not be changed directly

patpos�
UWORD�
Current position within the current pattern.�
�
�
�
�
�
sngpos�
SWORD�
Current pattern position. This indexes the positions array in the UNIMOD structure. This should not be changed directly. Use MikMod_SetPostion, MikMod_NextPosition, and MikMod_PrevPosition.�
�
�
�
�
�
numrow�
UWORD�
Number of rows in the current playing pattern.�
�
�
�
�
�
vbtick�
UBYTE�
Internal tick counter used to controlling the song speed. For each row of a module, the tick counter starts at 0 and counts up to sngspd, at which point the next row is processed.�
�
�
�
�
�
control�
MP_CONTROL *�
Named so because it contains player information for each effects control channel in the module. This array has numchn elements. See also MP_CONTROL structure.�
�
�
�
�
�
voice�
MP_VOICE *�
Array of player information for each mixing voice used by the module. Array has md_sngchn elements. See also MP_VOICE structure.�
�
�
�
�
�

Module Replay Flags [changes take effect immediately]:

All flages are defined as individual UBYTE elements within the structure, and modifications can be made at any time, and will take effect immidiately.

extspd�
Protracker extended speed enable / disable. A few older modules will not play at the correct speed unless this flag is cleared.�
�
�
�
�
panflag�
Extended panning effects enable / disable. If set to FALSE, 8xx effects will be ignored. Some older modules used in games or demos use 8xx commands to trigger events in the program, and this flag must be disabled else the module’s stereo effects will be erratic at best.�
�
�
�
�
loop�
Automatic song looping enable / disable. If TRUE, Player_Active will always be true. Note that some older modules use a position jump to loop the song, and will always loop no matter the setting of this variable.�
�
�
�
�
forbid�
Set this flag to TRUE to stop the player from updating. All voice activity will continue, with all samples playing until end or looping. This is also set and cleared by Player_Start and Player_Stop.�
�
�
�
�

MLOADER.C [Module Loader]

When you are making a module player that has to support several different module formats, it is best to create and use your own internal format. In MikMod, this is called the UniMod format, which is flexible enough to accommodate all supported module formats. The MLOADER is a software layer that will load and convert any supported module format to the UniMod format internally.

The loaders that you want to use must first be registered using MikMod_RegisterLoader or MikMod_RegisterAllLoaders (described below). Only the loaders that are registered will be linked into the executable. The MLOADER will autodetect modules in the order that they have been registered, and you must always register the 15-instrument loader [load_m15] last.

The main functions are MikMod_LoadSong, MikMod_LoadFP, MikMod_FreeSong, and MikMod_LoadTitle. The MLOADER also has many internal functions that are generally for use by the individual module loaders only. This aspect of the MLOADER will be documented in the next version of MikMod.

MDRIVER.C [Audio Driver]

The MDRIVER module is a set of universal routines for producing sound and managing the activity of the sound hardware. These routines are nearly 100% hardware independent, allowing all other parts of the program to use any soundcard or sound driver without modification. At a closer look, the MDRIVER is simply a set of ‘glue’ functions that redirect requested settings and function calls to the actual selected system hardware driver.

As with the MLOADER, the drivers that you want to use must first be registered using MikMod_RegisterDriver or MikMod_RegisterAllDrivers. Only the drivers that are registered will be linked into the executable. The MDRIVER will autodetect soundcards in the order that they have been registered, so take care to put the most functional soundcards first (ie, SB AWE32 should come before SB16, and SB16 should come before SBPro). If you use MikMod_RegisterAllDrivers, MikMod will choose the most appropriate ordering of soundcard autodetection.

The MDRIVER also defines several global variables which control the initialization of MikMod and the sound card, and various aspects of music and sound effects playback. These variables are categorized and listed in this section.

Make sure to check the conditions involved with changing a variable. Some are read-only and some others require special action after modification.

If no legal range is specified, then the range of the number is only restricted by the type.

Driver Control Variables

These global variables control the functionality of the soundcard and driver. These variables can be changed at any time, at which point their new values will take effect upon calling MikMod_Init at the start of the program, or MikMod_Reset anytime there-after. Both of these procedures take the liberty to modify any driver control settings that are not supported to the closest possible settings allowed for the particular driver in use.

For example, most soundcards have a maximum mixing rate of 44100 Hz, but some can go up to 48000 Hz. If you set md_mixfreq to 48000 Hz (which it defaults to if you do not change the setting), it will be truncated to 44100 Hz for those soundcards that only support that mixing rate. Note that the actual value in md_mixfreq will be changed to reflect the current mixing frequency.

md_device�
The number of the driver you want to use. Drivers are numbered starting at 1 as the first driver registered with MikMod_RegisterDriver. Set this to '0' to use soundcard autodetection.�
�
�
�
�
md_mixfreq�
The mixing frequency to be used. Higher mixing frequencies sound better, but are slower. Most soundcards max out at 44100Hz, some at 48000Hz.�
�
�
�
�
md_dmabufsize�
DMA buffer size in milliseconds (used only for software mixing and wave audio streaming).�
�
�
�
�
md_mode�
Flags what output mode to use. Use the bitwise OR (|) operator to combine flags. Available mixing mode flags are listed below:�
�

Mixing Mode Flags [use with md_mode]

There are two categories of flags in the md_mode variable: Those that take effect immediately, and those which only take effect if set before MikMod_Init or MikMod_Reset.

Take effect immidiately:

DMODE_SURROUND�
Dolby Surround Sound.�
�
�
�
�
DMODE_REVERSE�
Reverse stereo (left<->right).�
�
�
�
�
DMODE_INTERP�
Interpolated software mixing [not yet supported].�
�

Take effect after reinitialization only:

DMODE_STEREO�
Enable Stereo output.�
�
�
�
�
DMODE_16BITS�
Enable 16 bits output.�
�
�
�
�
DMODE_SOFT_SNDFX�
Force software mixing of sound effects. *�
�
�
�
�
DMODE_SOFT_MUSIC�
Force software mixing of music. *�
�

* Software mixing may not be available on all sound drivers. Also, changing these settings after samples have been loaded could cause unpredictable results because MikMod may look in the wrong place (either system or soundcard memory) for the samples.

�

MikMod_RegisterLoader

Syntax

void MikMod_RegisterLoader(MLOADER loader)

Module

MLOADER.C [as ML_RegisterLoader]

MIKMOD.H [macro definition]

Input Parameters

loader�
Handle for the MikMod module loader to register. [Available loaders are listed above]�
�

Description

Adds the specified loader to an internal list of useable loaders. This also informs the compiler to link in the code for the specified loader.

Before you can load any modules with MikMod_LoadSong or MikMod_LoadSongFP you must first register the loaders you want to use. Only the registered loaders will be linked into the executable, giving you better control over executable size. The smallest and fastest loader is the UniMod [load_uni] loader.

Notes

The loaders are autodetected in the order they are registered in. Hence, you should register the more common module types [XM, IT, S3M, MOD] first to help speed up autodetection.

The 15-instrument module loader should always be registered last. The header ID for this format is very poor, and many modules and non-modules can be mistaken as being 15-instrument modules.

See Also

MikMod_RegisterAllLoaders, MikMod_LoaderInfo.

Example

[at the start of the main program:]

{

 ..

 ML_RegisterLoader(&load_uni);

 ML_RegisterLoader(&load_mod);

 ML_RegisterLoader(&load_s3m);

 ML_InfoLoader();

 ..

 ..

}

MikMod_RegisterAllLoaders

Syntax

void MikMod_RegisterAllLoaders(void)

Module

MLREG.C

Description

Registers all module loaders that MikMod supports except the SoundTracker / UST (load_m15) loader. This is particularly convenient for module players. For games and demos, however, it is more efficient to convert all songs to the UniMod format and simply register load_uni alone using MikMod_RegisterLoader(load_uni).

The 15-instrument module loader is not automatically registered because of its inherent inaccuracy in autodetection (the format has no real header identifier). To register the 15-instrument loader, do it manually using MikMod_RegisterLoader(load_m15), and make sure to register it last.

See Also

MikMod_RegisterLoader, MikMod_LoaderInfo.

MikMod_LoaderInfo

Syntax

void MikMod_LoaderInfo(void)

Module

MLOADER.C

Description:

This function produces a list of all registered loader modules to stdout [using the infamous printf]. Use it after you have registered all loaders using MikMod_RegisterLoader or MikMod_RegisterAllLoaders.

See Also

MikMod_RegisterLoader, MikMod_RegisterAllLoaders.

MikMod_RegisterDriver

Syntax

void MikMod_RegisterDriver(MDRIVER driver)

Module

MDRIVER.C [as MD_RegisterDriver]

MIKMOD.H [macro definition]

Input Parameters

driver�
Handle for the MikMod module driver to register. [Available drivers are listed above]�
�

Description

Adds the specified hardware driver to an internal list of useable drivers. This also informs the compiler to link in the code for the driver. You should register all of the drivers you want to be autodetected or individually selected from before initializing with MikMod_Init.

Generally, this function need only be used by programmers who have developed their own drivers that are not part of the standard MikMod distribution. Otherwise, simply use MikMod_RegisterAllDrivers, seen below.

Notes

The drivers are autodetected in the order they are registered in. Hence, you should make sure to register the most functional hardware first (ie, SB AWE32 should come before SB16).

The No-Sound (drv_nos) driver is automatically linked in and need not be registered unless you want to actually select it specifically.

See Also

MikMod_RegisterAllDrivers, MikMod_DriverInfo.

MikMod_RegisterAllDrivers

Syntax

void MikMod_RegisterAllDrivers(void)

Module

MDREG.C

Description

Registers all drivers available for the system MikMod is being compiled for.

Notes

If you are using a driver that is not distributed with this version of MikMod, then you must register it yourself using MikMod_RegisterDriver.

See Also

MikMod_RegisterDriver, MikMod_DriverInfo.

MikMod_DriverInfo

Syntax

void MikMod_DriverInfo(void)

Module

MDRIVER.C

Description

This function produces a list of all registered soundcard drivers to stdout [using the ever famous printf]. Use it after you have registered drivers using MikMod_RegisterDriver or MikMod_RegisterAllDrivers.

See Also

MikMod_RegisterDriver, MikMod_RegisterAllDrivers.

MikMod_Init

Syntax

BOOL MikMod_Init(void)

Module

MDRIVER.C

Description

Performs most general MikMod initialization. Configures the soundcard hardware and allocates needed resources for sound output. The list of global variables use at initialization time are listed and described below.

Returns

true�
Error occurred during initialization.�
�
false�
Initialization successful.�
�

Notes:

The No-Sound driver [drv_nos] is used in cases where driver initialization fails. The No-Sound driver is a skeleton do-nothing driver that allows the programmer to call all MikMod related functions without crashing or undesired side effects.

See Also

MikMod_Reset, Global Variable Reference.

MikMod_Reset

Syntax

BOOL MikMod_Reset(void)

Module

MDRIVER.C

Description

Resets MikMod and reinitializes the soundcards. Use this function if you have changed any of the MikMod configuration variables: md_mode, md_mixfreq, md_dmabufsize, md_device.

See Also

MikMod_Init, Global Variable Reference.

MikMod_SetNumVoices

Syntax

BOOL MikMod_SetNumVoices(int music, int sndfx)

Module

MDRIVER.C

Input Parameters

music�
Number of voices to allocate for music. A value of -1 will retain the current setting.�
�
�
�
�
sndfx�
Number of voices to allocate for sound effects. A value of -1 will retain the current setting.�
�

Description

This sets the number of mixed voices that can be used for music and sound effects playback. Maximum voices vary from driver to driver (most hardware max out at 32 or 64 total voices, while the software mixer can handle up to 255). Values exceeding the maximum for the current driver will be truncated, and the new values can be found in the global variables md_numchn, md_sfxchn, md_sngchn, md_hardchn, and md_softchn [see the Global Variable Reference for details].

Returns

true�
Error occurred during initialization.�
�
False�
Initialization successful.�
�

Notes

Calling this function while the hardware is playing will cause a skip or pop in the sound.

For the software mixer, more channels means more CPU time mixing and more memory used.

For hardware mixers, more channels often means a lower quality of sound.

See Also

MikMod_Init, Global Variable Reference.

MikMod_EnableOutput

MikMod_DisableOutput

Syntax

void MikMod_EnableOutput(void)

void MikMod_DisableOutput(void)

Module

MDRIVER.C

Description

Starts and stops the mixing process of the soundcard. These functions affect playing on a hardware level, activating and shutting down DMA and interrupts. All calls to MikMod_Update are ignored while output is disabled.

MikMod_Exit

Syntax

void MikMod_Exit(void)

Module

MDRIVER.C

Description

Deinitializes the soundcard and frees all memory and resources used by MikMod.

See Also

MikMod_Init, MikMod_Reset.

MikMod_LoadSong

Syntax

UNIMOD *MikMod_LoadSong(CHAR *filename, int maxchan)

Module

MLOADER.C

Input Parameters:

filename�
Name of the file to open.�
�
�
�
�
maxchan�
Maximum number of channels that the song is allowed to request of the mixer.�
�

Description

Loads a music module by filename. The file will be opened and closed automatically, and the module will be ready to play with a call to MikMod_PlaySong. Use MikMod_FreeSong to unload the UNIMOD module when you are done with it.

If you are loading a module from a compounded [wad-type] file, see MikMod_LoadSongFP.

Returns

A pointer to a UNIMOD structure, which has all information about the loaded module, and is used as a handle for playing and later unloading the module. If an error occurs, NULL is returned.

See Also

MikMod_LoadSongFP, MikMod_PlaySong, MikMod_FreeSong.

MikMod_LoadSongFP

Syntax

UNIMOD *MikMod_LoadSongFP(FILE *fp, int maxchan)

Module

MLOADER.C

Input parameters

fp�
File-pointer to a music module. Module will be read from the current file seek position.�
�
�
�
�
maxchan�
Maximum number of channels that the song is allowed to request of the mixer.�
�

Description

Loads a module from the specified file starting at the current seek position for that file. Use MikMod_FreeSong to unload the UNIMOD module when you are done with it.

Returns

A pointer to a UNIMOD structure, which has all information about the loaded module, and is used as a handle for playing and later unloading the module. If an error occurs, NULL is returned.

Notes

This routine does not close the file, and it does not automatically load the module’s samples like MikMod_LoadSong does.

See Also

MikMod_LoadSong, MikMod_PlaySong, MikMod_FreeSong.

MikMod_LoadSongTitle

Syntax

UNIMOD *MikMod_LoadSongTitle(CHAR *filename)

Module

MLOADER.C

Input parameters

filename�
Filename of the module to load the song title from.�
�

Description

Loads a module title from the specified file. This function performs the same autodetection of file type as does MikMod_LoadSong and MikMod_LoadSongFP. If the song has no title, or the file wa unable to be opened, then a NULL string will be returned.

Returns

A pointer to a CHAR string of the title.

NULL if the file does not exist.

Notes

This routine loads the song title and immediately closes the file when done.

See Also

MikMod_LoadSong, MikMod_LoadSongFP.

MikMod_LoadSamples

Syntax

BOOL MikMod_LoadSamples(void)

Module

SLOADER.C

Description

Loads all samples that have been registered with SL_RegisterSample, or loaded through any of the built-in MikMod sample-loader modules such as the WAV loader. Note that all files that will be used must remain open until after this procedure has been called!

Returns

0 if successful, or 1 on error.

MikMod_FreeSong

Syntax

void MikMod_FreeSong(UNIMOD *mf)

Module

MLOADER.C

Input parameters:

mf�
UNIMOD handle of the song to be removed form memory.�
�

Description:

Unloads the module from memory. This includes pattern data and sample data associated with this module only. This should only be used to free modules loaded with MikMod_LoadSong or MikMod_LoadSongFP.

See Also

MikMod_LoadSong, MikMod_LoadSongFP, MikMod_PlaySong.

MikMod_PlaySample

Syntax

int MikMod_PlaySample(SAMPLE *samp, ULONG start, UBYTE flags)

Module

MDRIVER.C

Input Parameters

samp�
The sample to play as a sound effect.�
�
�
�
�
start�
The starting offset within the sample to begin play (measured in samples).�
�
�
�
�
flags�
Specifing SFX_CRITICAL causes the sample to be critical, and it cannot be interrupted by additional calls to MikMod_PlaySample.�
�

Description

Plays a sample as a sound effect. This procedure automatically picks a channel from the allocated sound effects channels (set using MikMod_SetNumVoices).

To make a sample non-interruptible, set ‘flags’ to SFX_CRITICAL, which will inform MikMod_PlaySample not to interrupt this sample for any reason. You must cut the sample yourself using Voice_Stop.

Returns

A channel handle for the sound effect is returned. This channel handle can be used with all of the Voice_ functions.

Voice selection method

Each new sound effect is played in a new voice. The voice selector cycles through all sndfx voices and wraps to the first voice [cutting sounds if needed].

Examples:

// Here we play the sample 'kaboom'. The sample handle is not

// important here because we won't be needing any of the Voice_

// functions, so we ignore it:

MD_PlaySound(kaboom, 0, 0); // play sample kaboom.

// Here we start a background water effect, which is critical to the

// game and should not be cut, so we set the SFX_CRITICAL flag:

waterbg_handle = MD_PlaySound(water_sound, 0, SFX_CRITICAL);

 ..

 ..

Voice_Stop(waterbg_handle); // then we stop the sample later

Voice_Play

Syntax

void Voice_Play(UBYTE voice, SAMPLE *samp, ULONG start)

Module

MDRIVER.C

Input parameters

voice�
Number of the voice to be processed (0 is voice 1).�
�
�
�
�
samp�
The sample to play.�
�
�
�
�
start�
The initial start offset to play from (in samples!)�
�

Description

Starts playing a new sample on the specified voice, using the size and loop parameters specified in the SAMPLE structure given. The sample will be played at the current volume, panning, and frequency settings of the voice. You can change these settings either before or after calling Voice_Play.

See Also

MikMod_PlaySample, Voice_SetVolume, Voice_SetFrequency, Voice_Stop.

Voice_Stop

Syntax

void Voice_Stop(UBYTE voice)

Module

MDRIVER.C

Input parameters

voice�
Number of the voice to be stopped (0 is voice 1).�
�

Description

Completely stops the currently playing sample of specified voice. After this is called, Voice_Stopped will return TRUE for the given channel.

Another method of silencing a voice is by using Voice_SetVolume(voice, 0) to set the volume to 0. This will not cause Voice_Stopped to return true.

See Also

MikMod_PlaySample, Voice_Play, Voice_SetVolume, Voice_SetFrequency, Voice_Stopped.

Voice_SetFrequency

Syntax

void Voice_SetFrequency(UBYTE voice, ULONG speed)

Module

MDRIVER.C

Input parameters

voice�
Number of the voice to be processed (0 is voice 1).�
�
�
�
�
Speed�
new playback frequency / speed.�
�

Description

Sets the playback frequency / speed of a single voice (frequency and speed are the same thing).

Example

Voice_SetFrequency(12, 22000) /* Set speed of voice 13 */

See Also

MikMod_PlaySample, Voice_Play, Voice_SetVolume, Voice_SetPanning, Voice_Stop.

Voice_SetPanning

Syntax

void Voice_SetPanning(UBYTE voice, UBYTE pan)

Module

MDRIVER.C

Input parameters

voice�
Number of the voice to be processed (0 is voice 1).�
�
�
�
�
pan�
New panning position for this voice.�
�

Description

Changes the panning position (balance) for the specified voice. A balance of 0 is left, 127 is center, and 255 is right. Dolby Surround Sound can be enabled by specifying PAN_SURROUND. PAN_LEFT, PAN_CENTER, and PAN_RIGHT are also defined.

See Also

MikMod_PlaySample, Voice_Play, Voice_SetVolume, Voice_SetFrequency, Voice_Stop.

Voice_Stopped

Syntax

void Voice_Stopped(UBYTE voice)

Module

MDRIVER.C

Input parameters

voice�
Number of the voice to check (0 is voice 1).�
�

Description

Checks the playing status of a voice to see if it is active or not.

Returns

true�
Voice is active playing a sample.�
�
false�
No sample is assigned to the voice or is stopped.�
�

See Also

Voice_Stop.

Voice_GetPosition

Syntax

void Voice_GetPosition(UBYTE voice)

Module

MDRIVER.C

Input parameters:

voice�
Number of the voice to get sample position (0 is voice 1).�
�

Description:

Gets the sample position (in samples) of the current sample playing the specified voice.

Returns:

The current play location of the sample playing on the specified voice (measured in samples). Returns zero if the function is either not supported or if no sample is associated with the voice.

Note:

This may not work on all soundcards. If not supported by the driver, this function returns zero.

See Also

MikMod_PlaySample, Voice_Play.

Voice_RealVolume

Syntax

void Voice_RealVolume(UBYTE voice)

Module

MDRIVER.C

Input parameters

voice�
Number of the voice (0 is voice 1).�
�

Description

Determines the actual playing volume of an individual voice at the time the function is called. This good for making real volume bars. Note that this function does require a small amount of CPU to run.

Returns

A value that represents the real volume of the voice at its current playing position when the function is called. Values are always in 16 bit, and range from 0 to 65535.

Notes

This function does not work on some soundcards, such as the AWE32.

Calculating the real volume can be processor intensive.

The volume returned is the real volume of the sample data, and is not related to the volume assigned to a voice via Voice_SetVolume.

See Also

MikMod_PlaySample, Voice_Play, Voice_SetVolume.

MikMod_Update

Syntax

void MikMod_Update(void)

Module

MDRIVER.C

Description

Call this routine regularly to update the sound. When called it fills the DMA buffer. The larger the DMA buffer, the less frequently MikMod_Update needs to be called [DMA buffer size is determined by the global md_dmabufsize].

Notes

This routine is needed for software mixing only, and need not be called at all if the program will use hardware-only soundcard drivers.

If you plan on modifying voice information using any of the Voice_ functions above, you should call this procedure afterward and not before.

Larger DMA buffers cause a desync'ed timing between the sound being played and the reported state of the module player or driver. The buffer is filled ahead of time, and therefore the player will report itself as being further along than the song is audibly.

See Also

md_dmabufsize [Global Variable Reference].

MikMod_RegisterPlayer

Syntax

void MikMod_RegisterPlayer(void (*player)(void))

Module

MDRIVER.C

Input Parameters

player�
The procedure the driver should call to process each ‘tick’ of the module.�
�

Description

Tells MikMod which function to call for each ‘tick’ of a module. Modules are processed in a resolution of ticks, and at each tick interval pitch, volume, panning, and other effects are processed and updated as needed. The rate at which this tickhandler is called is controlled by the sound driver, and is determined by the following equations:

(BPM*50)/125 timer per second -OR- every 125000/(BPM*50) milliseconds.

The BPM [beats per minute] can be set by changing the md_bpm global variable. While playing a module, MikMod will change the BPM if requested by the song, and will override any user settings.

By default, MikMod calls MP_HandleTick, and generally speaking this should not have to be changed. However, if you would like to have other things done for each tick of the module, then follow the example below for using your own tickhandler.

See Also

MD_SetBPM, MP_HandleTick, Global Variable Reference.

Example

void tickhandler(void)

{

 MP_HandleTick(); /* Without this no music would be played */

 ..

 ..

 tick_count++; /* possible addition */

}

void main(void)

{

 ..

 /* make sure to register the new player

 [this can be done at any time] */

 MikMod_RegisterPlayer(tickhandler);

 ..

 ..

}

MPLAYER.C [Module Player]

The MPLAYER is the main effects processor for the internal UNIMOD format. It consists of a 'tick handler' called at a certain rate (as determined by the hardware driver in use), which processes song information beat-by-beat.

You can communicate with the MPLAYER via a set of routines (described below) and through the UNIMOD structure (see ptform.h). The UNIMOD structure contains information about all aspects of song replay, and is especially handy for programmers writing module players or trackers.

MP_Init

Syntax

BOOL MP_Init(UNIMOD *mf)

Module

MPLAYER.C

Input Parameters

mf�
Pointer to the UNIMOD structure (module handle)�
�

Returns

true�
Error occurred during initialization.�
�
False�
Initialization successful.�
�

Description

Initializes the specified UNIMOD module. Generally used by MikMod internal purposes only.

Notes

This procedure is automatically called by MikMod_LoadSong and MikMod_LoadSongFP, and therefore there is little reason for the end user to have to use it.

See Also

MikMod_LoadSong, MikMod_LoadSongFP, MikMod_PlayStart.

MikMod_PlayStart

Syntax

void MikMod_PlayStart(UNIMOD *mf)

Module

MPLAYER.C

Input Parameters

mf�
Pointer to the UNIMOD structure (module handle)�
�

Description

Prepares the module player for playing the specified song. Subsequent calls to MikMod_SetPosition, MikMod_Mute, MikMod_TogglePause, etc. will have effect on the newly playing module. Also, MP_HandleTick will process the module data.

See Also

MikMod_PlayStop, MikMod_TogglePause, MikMod_SetPosition, MikMod_Mute.

MikMod_PlayStop

Syntax

void MikMod_PlayStop(void)

Module

MPLAYER.C

Description

Shuts down the module player and stops all song-related mixing voices. Calls to MP_HandleTick and to will be ignored.

See Also

MikMod_PlayStart, MikMod_TogglePause.

MikMod_TogglePause

Syntax

void MP_TogglePause(void)

Module

MPLAYER.C

Description

Either enables or disables playing of the specified song, depending on it's current status. Calls to MikMod_SetPosition, MikMod_Mute, etc. will still have effect whether the module is paused or playing.

See Also

MikMod_PlayStart, MikMod_PlayStop.

MikMod_Playing

Syntax

BOOL MikMod_Playing(void)

Module

MPLAYER.C

Returns

true�
The module is still playing.�
�
false�
End of the module encountered, playing has stopped.�
�

Description

Use this procedure to check if a module has finished playing. This is only useful if you disable song looping (set mf->loop to 0).

Notes

Pausing the song does not affect the return status.

Calling MikMod_PlayStop will result in a return status of FALSE.

Some modules have a pattern jump back to the beginning or middle of the song at the end and will always loop forever no matter the setting of the loop flag. There is no sure way to detect these type modules.

See Also

MikMod_PlayStart, MikMod_PlayStop, UNIMOD Structure.

MikMod_NextPosition

MikMod_PrevPosition

Syntax

void MikMod_NextPosition(void)

void MikMod_PrevPosition(void)

Module

MPLAYER.C

Description

Jumps to the next or previous pattern position in the currently playing song. All playing samples and active song voices are cut to avoid hanging notes.

Notes

The current song position can be read from the global mp_sngpos.

�See Also

MikMod_SetPosition, MP_SetPosition, MP_NextPosition, MP_PrevPosition, UNIMOD Structure.

MikMod_SetPosition

Syntax

void MikMod_SetPosition(UWORD pos)

Module

MPLAYER.C

Input Parameters

pos�
pattern position to jump to.�
�

Description

Jumps to the specified pattern position in the song. All playing samples and active channels are cut to avoid hanging notes.

Notes

The current song position can be read from the global mp_sngpos.

�See Also

MikMod_NextPosition, MikMod_PrevPosition, MP_SetPosition, UNIMOD Structure.

MP_NextPosition

MP_PrevPosition

Syntax

void MP_NextPosition(UNIMOD *mf)

void MP_PrevPosition(UNIMOD *mf)

Module

MPLAYER.C

Input Parameters

mf�
Pointer to the UNIMOD structure (module handle)�
�

Description

Jumps to the next or previous pattern position in the song. The song need not be currently playing, and if not the changes will take effect when after calling MikMod_PlayStart. If the song is currently playing, all playing samples and active song voices are cut to avoid hanging notes.

Notes

The current song position can be read from the global mp_sngpos.

�See Also

MikMod_NextPosition, MikMod_PrevPosition, MikMod_SetPosition, MP_SetPosition, UNIMOD Structure.

MP_SetPosition

Syntax

void MP_SetPosition(UNIMOD *mf, UWORD pos)

Module

MPLAYER.C

Input Parameters

mf�
Pointer to the UNIMOD structure (module handle).�
�
�
�
�
pos�
pattern position to jump to.�
�

Description

Jumps to the specified pattern position in the song. The song need not be currently playing, and if not the changes will take effect when after calling MikMod_PlayStart. If the song is currently playing, all playing samples and active song voices are cut to avoid hanging notes.

Notes

The current song position can be read from the global mp_sngpos.

�See Also

MP_NextPosition, MP_PrevPosition, MikMod_SetPosition, UNIMOD Structure.

MP_Mute

MP_UnMute

MP_ToggleMute

Syntax

void MP_Mute(UNIMOD *mf, SLONG arg1, ...)

void MP_UnMute(UNIMOD *mf, SLONG arg1, ...)

void MP_ToggleMute(UNIMOD *mf, SLONG arg1, ...)

Module

MPLAYER.C

Input Parameters:

mf�
Pointer to the UNIMOD structure (module handle)�
�
�
�
�
arg1�
Song channel to be muted / unmuted, or MUTE_INCLUSIVE or MUTE_EXCLUSIVE.�
�

Description

Functions used for muting or unmuting channels of a module. You can simply mute or unmute a single channel of the song by passing that channel number, or mute a range of channels by specifying ‘arg1’ as either MUTE_INCLUSIVE or MUTE_EXCLUSIVE. If either is given, then two more parameters of type int are expected which indicate the range of channels that should be muted or unmuted.

MP_ToggleMute will toggle the mute status of the given channel or range of channels.

See Also

MP_Muted, UNIMOD Structure.

Examples

MP_Mute(mf, 10); // Mute channel 10

MP_Mute(mf, MUTE_INCLUSIVE, 5, 15); // Mute channels 5 through 15

MP_Unmute(mf, MUTE_EXCLUSIVE, 5, 15); // Unmute channels 6 through 14

MP_HandleTick

Syntax

void MP_HandleTick(void)

Module

MPLAYER.C

Description

Plays one ‘tick’ of a module. Modules are processed in a resolution of ticks, and at each tick interval pitch, volume, panning, and other effects are processed and updated.

This is the default ‘player’ procedure called by the sound driver. If you make your own tickhandler using MikMod_RegisterPlayer, you should make sure to call this procedure from it if you want to use the module player.

SLOADER.C [Raw Sample Data Loader and Converter]

The SLOADER is a loader and converter for loading raw sample data. It performs conversions at load-time to and from 8 bit and 16 bit, signed and unsigned, and does sample scaling (reducing sample quality to allow more samples to fit in a limited memory-space).

The SLOADER is used by both MLOADER.C and MWAV.C. Generally, the end user need not worry about this aspect of MikMod. However, some advanced areas of usage may benefit from this information, so it has been included for completeness.

SL_RegisterSample

Syntax

SAMPLOAD SL_RegisterSample(SAMPLE *sample, FILE *fp)

Module

SLOADER.C

Input Parameters

sample�
Pointer to an allocated SAMPLE structure. This structure cannot be changed after SL_RegisterSample has been called.�
�
�
�
�
Fp�
Pointer of the file the sample should be loaded from. Note that the seekpos within the file is stored in the SAMPLE structure.�
�

Description

This procedure tells the SLOADER crucial sample information needed for load-time conversions that will be done later (after all samples to be loaded have been specified), when SL_LoadSamples is called. The SAMPLOAD structure returned is used as a handle for controlling the conversions.

The SAMPLE structure should contain the exact information of the raw sample data to be loaded. To then control the format of the sample after being loaded, use the conversion procedures described below. The SAMPLE structure should not be changed after SL_RegisterSample has been called. This can cause unpredictable results.

Notes

All files registered must remain open until after SL_LoadSamples has been called. The sample data is not actually read until that point.

SL_Sample8to16

SL_Sample16to8

SL_SampleSigned

SL_SampleUnsigned

Syntax

void SL_Sample8to16(SAMPLOAD *s)

void SL_Sample16to8(SAMPLOAD *s)

void SL_SampleSigned(SAMPLOAD *s)

void SL_SampleUnsigned(SAMPLOAD *s)

Module

SLOADER.C

Input Parameters

s�
a SAMPLOAD handle, as returned by SL_RegisterSample.�
�

Description

These procedures control the format sampled data should be converted to while loading. Samples can be converted to and from 8 bit and 16 bit, or signed and unsigned data. Note that the SAMPLE structure associated with the SAMPLOAD handle will be modified immediately to reflect these changes (the 'flags' element).

SL_HalveSample

Syntax

void SL_HalveSample(SAMPLOAD *s)

Module

SLOADER.C

Input Parameters:

s�
a SAMPLOAD handle, as returned by SL_RegisterSample.�
�

Description:

The name of this procedure is somewhat misleading; I could not think of a better one. It does not actually halve the sample data each call. It increments a divisor, which makes the size progression as such with each call:

divfactor = 2, scale = 1/2

divfactor = 3, scale = 1/3

divfactor = 4, scale = 1/4

 ..

 ..

Note that the SAMPLE structure associated with the SAMPLOAD handle will be modified immediately to reflect these changes (the 'length', 'loopstart', 'loopend' elements, etc).

Notes

Scaling is averaged to help reduce static.

Generally, one should never have to call this procedure themselves. The SLOADER will use it automatically to make samples fit into available soundcard memory.

I may change this in the future to use fixed or floating point math, and hence increment by smaller intervals. I also may remove it in favor of a new procedure which simply accepts a 'scale' parameter. [Done if I receive requests for such features]

SL_LoadSamples

Syntax

BOOL SL_LoadSamples(void)

Module

SLOADER.C

Description

Loads all samples that have been registered with SL_RegisterSample. Note that all files that will be used must remain open until after this procedure has been called!

Returns

0 if successful, or 1 on error.

�
Soundcard Reference

Generic Drivers for All Platforms

The following drivers are available on all supported platforms.

No-Sound Driver

Sound Quality�
N/A�
�
MikMod Driver�
drv_nosound�
�
Manufacturer�
Creative Silence™�
�
�
�
�
Notes / Tips�
This driver is the default driver MikMod falls back upon if no other drivers can be successfully initialized. The No-Sound driver essentially does nothing at all, not even update the module player (so the NOS driver does not do adequate substitution if parts of your program are timed to the music replay).�
�

RAW Out Driver

Sound Quality�
Any Hz / Stereo / 16-bit *�
�
MikMod Driver�
drv_raw�
�
�
�
�
Notes / Tips�
The raw driver makes a file called RAW.OUT and dumps the raw mixer data to the file. Any mixing rate can be used, even outrageous values such as 176,400 Hz. See also the WAV Out driver [drv_wav].�
�

RAW Out Driver

Sound Quality�
Any Hz / Stereo / 16-bit *�
�
MikMod Driver�
drv_wav�
�
�
�
�
Notes / Tips�
The WAV driver makes a file called RAW.WAV and dumps the raw mixer data to the file, along with a RIFF WAVE file header (so that it can be replayed with most any common multimedia player). See also the RAW Out driver [drv_raw].�
�

* Generally speaking, the output quality of the RAW and WAV drives will be significantly better than that of the real-time mixer used for playback on soundcards like the SB16. The RAW and WAV drivers can use methods of audio improvement that are not an option in real-time playback because of speed constraints [real-time mixing uses virtch.c, while RAW-out and WAV-out use virtch2.c]. For more detailed information, see Using To-Disk Mixing.

MS-DOS and Windows Soundcards

There are a huge array of soundcards for the PC, all with varying abilities and functionality. MikMod houses most of the more popular soundcards under one API. Below is a table of all the soundcards MikMod has direct support for.

Gravis Ultrasound / MAX

Sound Quality�
44100 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
drv_gus�
�
Hardware Mixer�
30 Voices�
�
Onboard RAM�
256k (max. 1 MB)�
�
Sound Blaster compatible�
No�
�
Manufacturer�
Advanced Gravis Computer Technology Ltd.�
�
�
�
�
Notes / Tips�
The Gravis Ultrasound has the capability of combining voices mixed by both hardware and software. The standard MikMod driver supports this ability. However, programmers that do not need to use the software mixing feature (demo coders in particular) should use drv_gus2 instead, which uses only the native hardware mixer and is smaller and faster.�
�

Gravis Ultrasound PnP

Sound Quality�
48000 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
Not yet supported, but will be soon.�
�
Hardware Mixer�
30 Voices, Reverb�
�
Onboard RAM�
512k (max. 14 MB)�
�
Sound Blaster compatible�
No�
�
Manufacturer�
Advanced Gravis Computer Technology Ltd.�
�

Sound Blaster 16

Sound Quality�
44100 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
drv_sb16 / drv_sbpro / drv_sb�
�
Hardware Mixer�
None�
�
Onboard RAM�
None�
�
Sound Blaster compatible�
Yes�
�
Manufacturer�
Creative Labs, Inc.�
�

Sound Blaster 32

Sound Quality�
44100 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
drv_awe�
�
Hardware Mixer�
30 Voices�
�
Onboard RAM�
None (max. 28 MB)�
�
Sound Blaster compatible�
Yes�
�
Manufacturer�
Creative Labs, Inc.�
�
�
�
�
Notes / Tips�
The Sound Blaster 32 is nothing more than the SB AWE 32 without the standard 512k of RAM. If the SB32 has RAM installed, it behaves just like an AWE 32, but without any RAM it can only be used as an SB16 [software mixing only].�
�

Sound Blaster AWE 32 / 64

Sound Quality�
44100 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
drv_awe�
�
Hardware Mixer�
30 Voices�
�
Onboard RAM�
512k (max. 28 MB)�
�
Sound Blaster compatible�
Yes�
�
Manufacturer�
Creative Labs, Inc.�
�
�
�
�
Notes / Tips�
The AWE 32 driver for MikMod currently cannot do both hardware and software mixing at the same time, as can the Gravis Ultrasound. Hopefully this will be fixed at a later date. In the meantime, if you are in need of dynamically loading or loading many large sound effects, we suggest you use the SB16 driver only.

Currently, the features of the AWE 64 are not actually taken advantage of (namely the availability of 64 hardware voices). Support for the AWE 64 will be improved in a future version of MikMod.�
�

Pro Audio Spectrum 16

Sound Quality�
441000 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
drv_pas16�
�
Hardware Mixer�
None�
�
Onboard RAM�
None�
�
Sound Blaster compatible�
Yes (mono only)�
�
Manufacturer�
Media Vision�
�

Ensoniq Soundscape

Sound Quality�
441000 Hz / Stereo / 16 Bit (CD Quality)�
�
MikMod Driver�
drv_ess�
�
Hardware Mixer�
None�
�
Onboard RAM�
None�
�
Sound Blaster compatible�
Yes (mono only)�
�
Manufacturer�
Ensoniq Corporation�
�
�
�
�
Notes / Tips�
This Soundscape driver is not compatible with the Ensoniq Soundscape Plug-and-Play card.�
�

